skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bum Cho, Danny Hyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Significant amounts of data are currently being stored and managed on third-party servers. It is impractical for many small scale enterprises to own their private datacenters, hence renting third-party servers is a viable solution for such businesses. But the increasing number of malicious attacks, both internal and external, as well as buggy software on third-party servers is causing clients to loose their trust in these external infrastructures. While small enterprises cannot avoid using external infrastructures, they need the right set of protocols to manage their data on untrusted infrastructures. In this paper, we propose TFCommit, a novel atomic commitment protocol that executes transactions on data stored across multiple untrusted servers. To our knowledge, TFCommit is the first atomic commitment protocol to execute transactions in an untrusted environment without using expensive Byzantine replication. Using TFCommit, we propose an auditable data management system, Fides, residing completely on untrustworthy infrastructure. As an auditable system, Fides guarantees the detection of potentially malicious failures occurring on untrusted servers using tamper-resistant logs with the support of cryptographic techniques. The experimental evaluation demonstrates the scalability of our approach and the relatively low overhead of executing transactions on untrusted infrastructure. 
    more » « less